x^2=(25)/(89)

Simple and best practice solution for x^2=(25)/(89) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=(25)/(89) equation:



x^2=(25)/(89)
We move all terms to the left:
x^2-((25)/(89))=0
We add all the numbers together, and all the variables
x^2-(+25/89)=0
We get rid of parentheses
x^2-25/89=0
We multiply all the terms by the denominator
x^2*89-25=0
Wy multiply elements
89x^2-25=0
a = 89; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·89·(-25)
Δ = 8900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8900}=\sqrt{100*89}=\sqrt{100}*\sqrt{89}=10\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{89}}{2*89}=\frac{0-10\sqrt{89}}{178} =-\frac{10\sqrt{89}}{178} =-\frac{5\sqrt{89}}{89} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{89}}{2*89}=\frac{0+10\sqrt{89}}{178} =\frac{10\sqrt{89}}{178} =\frac{5\sqrt{89}}{89} $

See similar equations:

| -4(b=1)+2b=3(2b-1) | | 36+61+4x-17=180 | | 2x/0.3-x=2.65 | | 4x-3=139 | | -7s+12=-9s-8 | | 3=c(-11) | | 8m+10=6m+24 | | 7x^2+10x+1=0 | | 4-5x/2=-4x+10 | | 1.2(3b-1)+2.1-1.8b=0 | | 3(x+3)+4=40 | | 5.4=-12.1+(-4.6c)+2.6c | | 72+46+2x+20=180 | | -3(x-3)=5x+10 | | a/5-29=40 | | 3/8t=1/2 | | -4(b=1)=2b=3(2b-1) | | 57x+25=64x+15 | | 1-6y=-7 | | 1/3(x-3)=5/3x-7 | | 4(2q-3)=12 | | 2x-16+4x=6x-12 | | 144y2-45=-36 | | 1.5x=2x-95 | | 1-3(x-5)=5x-12 | | 7+40x=60+20x | | 1.5x=-95 | | 71+64+8x-11=180 | | 8x+6x-19=57-5x | | 6+8+10=5x | | A1=5n | | 6x+22=10x-18 |

Equations solver categories